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Abstract
Multi-view learning receives increasing interest in
recent years to analyze complex data. Lately, multi-
view maximum entropy discrimination (MVMED)
and alternative MVMED (AMVMED) were pro-
posed as extensions of maximum entropy discrim-
ination (MED) to the multi-view learning setting,
which use the hard margin consistency principle
that enforces two view margins to be the same.
In this paper, we propose soft margin consis-
tency based multi-view MED (SMVMED) achiev-
ing margin consistency in a less strict way, which
minimizes the relative entropy between the posteri-
ors of two view margins. With a trade-off parame-
ter balancing large margin and margin consistency,
SMVMED is more flexible. We also propose a se-
quential minimal optimization (SMO) algorithm to
efficiently train SMVMED and make it scalable
to large datasets. We evaluate the performance of
SMVMED on multiple real-world datasets and get
encouraging results.

1 Introduction
Heterogeneous data analysis is a timely and important task
for the artificial intelligence community. For many real-world
datasets, features can be naturally partitioned into distinct
sets, each of which is regarded as a view. Then each datum
can be described by multiple views. For instance, a web page
can be described by the text on it and words appearing in
the hyperlinks to it, each of which forms a single view. As
another example, in multimedia content understanding, mul-
timedia segments can be described by both their audio and
video signals.

Multi-view learning is the learning scheme that utilizes the
heterogeneous property of datasets. Compared with single
view learning, multi-view learning learns a function on each
view and train them jointly to improve performance. Xu, Tao
and Xu [2013] and Sun [2013] have surveyed the develop-
ment and applications of multi-view learning.

Maximum entropy discrimination (MED) [Jaakkola et al.,
2000] is an effective approach to learn a discriminative clas-
sifier as well as consider uncertainties over model parame-
ters, which combines generative and discriminative learning.

Rather than find a single classifier parameter Θ of the dis-
criminant function L(Θ) (e.g., L(Xt|Θ) = θTXt + b, Θ =
{θ, b}), MED considers to learn a distribution p(Θ) over
classifier parameter Θ. After obtaining a joint distribution
p(Θ,γ) over Θ and margin parameters γ by minimizing its
relative entropy (also known as Kullback-Leiber divergence,
or KL divergence) with respect to some prior target distribu-
tion p0(Θ,γ) under certain large margin constraints, MED
marginalizes out γ to obtain p(Θ) [Jebara, 2004]. MED can
be extended to a wide variety of learning scenarios, such
as feature selection [Jebara and Jaakkola, 2000], multitask
learning [Jebara, 2011] and structure learning [Zhu and Xing,
2009; Zhu et al., 2008a; 2008b].

Recently, multi-view maximum entropy discrimination
(MVMED) [Sun and Chao, 2013] was proposed as an ex-
tension of MED to the multi-view learning setting. It con-
siders a joint distribution p(Θ1,Θ2) over the view 1 classi-
fier parameter Θ1 and view 2 classifier parameter Θ2. Using
the augmented joint distribution p(Θ1,Θ2,γ), MVMED was
formulated as follows

min p(Θ1,Θ2,γ) KL(p(Θ1,Θ2,γ) || p0(Θ1,Θ2,γ))

s.t.


∫
p(Θ1,Θ2,γ)[ytL1(X

1
t |Θ1)−γt]dΘ1dΘ2dγ≥0∫

p(Θ1,Θ2,γ)[ytL2(X
2
t |Θ2)−γt]dΘ1dΘ2dγ≥0

1 ≤ t ≤ N,
(1)

where L1(X
1
t |Θ1) and L2(X

2
t |Θ2) are discriminant func-

tions from two views, respectively. Chao and Sun [2015] also
proposed a similar MVMED framework called alternative
MVMED (AMVMED), which considers two separate distri-
butions p1(Θ1) over Θ1 and p2(Θ2) over Θ2 and balances
KL divergences of their augmented distributions with respect
to the corresponding prior distributions. AMVMED was for-
mulated as

min p1(Θ1,γ), p2(Θ2,γ) ρKL(p1(Θ1,γ) || p0(Θ1,γ))

+ (1− ρ)KL(p2(Θ2,γ) || p0(Θ2,γ))

s.t.



∫
p(Θ1,γ) [ytL1(X

1
t |Θ1)− γt] dΘ1dγ ≥ 0∫

p(Θ2,γ) [ytL2(X
2
t |Θ2)− γt] dΘ2dγ ≥ 0∫

p(Θ1,γ)dΘ1 =
∫
p(Θ2,γ)dΘ2

1 ≤ t ≤ N.

(2)



Unlike conventional multi-view learning methods,
MVMED and AMVMED exploit the multiple views in a
different style called margin consistency, that is, to enforce
the margins from two views to be identical. Although they
have provided state-of-the-art multi-view learning perfor-
mance, this margin consistency requirement may be too
strong to fulfill in many cases. For example, all positive
margins can lead to the same label prediction in binary
classifications. It is thus interesting to explore the possibility
of relaxing the requirement. Moreover, as far as we know, the
current training algorithms for MVMED and AMVMED are
inefficient and not scalable, which prevent people from using
them to large datasets.

In this paper, we propose a new multi-view MED frame-
work named soft margin consistency based multi-view MED
(SMVMED) which is based on the different principle of soft
margin consistency. We give an iterative method to approxi-
mate the solution. Compared with MVMED and AMVMED
with ‘hard’ margin consistency that enforces the margins
from two views to be identical, SMVMED achieves ‘soft’
margin consistency by utilizing the sum of two KL diver-
gences KL(p(γ) || q(γ)) and KL(q(γ) || p(γ)) in the objec-
tive function, where p(γ) and q(γ) are the posteriors of two
view margins, respectively. By balancing all the involved
terms in the objective function, SMVMED is more flexi-
ble. Moreover, we propose a sequential minimal optimization
(SMO) algorithm [Platt, 1999] to effectively train SMVMED
for large datasets under some configurations on priors of
model and margin parameters.

The rest of the paper is organized as follows. We first intro-
duce our SMVMED and derive its solution. Then a practical
realization of SMVMED will be given. Next we describe the
SMO algorithm for fast training and scalability. After that, we
report experiments on multiple real-world datasets. Finally,
conclusions are given.

2 Soft Margin Consistency Based Multi-view
MED

In this section, we give the formal framework of our soft
margin consistency based multi-view MED. It achieves mar-
gin consistency by minimizing the KL-divergence between
the posteriors of margin parameters from two views. We also
introduce a trade-off parameter balancing large margin and
margin consistency to make the model more flexible.

Suppose we are given a multi-view dataset
{X1

t , X
2
t , yt}, t = 1, . . . , N, where X1

t and X2
t indi-

cate the tth input from view 1 and view 2, respectively,
and yt ∈ {±1} is the label. SMVMED aims to learn two
discriminant functions L1(X

1
t |Θ1) and L2(X

2
t |Θ2) for

two views, respectively, where Θ1 and Θ2 are parame-
ters of these two functions. First, we assume that there
are two independent distributions p(Θ1) and p(γ), with
their joint distribution p(Θ1,γ) = p(Θ1)p(γ), where
γ = {γt}, t = 1, . . . , N, is the margin parameter. Here
p(Θ1) is the posterior of Θ1 and p(γ) is the posterior of
margins from view 1. Then the same settings are applied to
view 2, that is, q(Θ2,γ) = q(Θ2)q(γ), where q(γ) is the
posterior of margins from view 2. Formally, SMVMED can

be formulated as follows:

min p(Θ1,γ), q(Θ2,γ) KL(p(Θ1) || p0(Θ1))

+KL(q(Θ2)||q0(Θ2))

+(1−α)KL(p(γ) || p0(γ)) + (1−α)KL(q(γ)||q0(γ))
+αKL(p(γ) || q(γ)) + αKL(q(γ) || p(γ))

s.t.


∫
p(Θ1,γ) [ytL1(X

1
t |Θ1)− γt] dΘ1dγ ≥ 0∫

q(Θ2,γ) [ytL2(X
2
t |Θ2)− γt] dΘ2dγ ≥ 0

1 ≤ t ≤ N.
(3)

Since we will choose the margin priors that favor large mar-
gins, the parameter α above plays the trade-off role of balanc-
ing large margin and soft margin consistency.

Since it is tricky to find the solutions making the partial
derivatives of the Lagrangian of (3) with respect to p(Θ1,γ)
and p(Θ1,γ) be zero, we propose an iterative scheme for
finding a solution to (3). In the mth iteration, we successively
update p(m)(Θ1,γ) and q(m)(Θ2,γ) by solving the follow-
ing two problems:

p(m)(Θ1,γ)

= argminp(m)(Θ1,γ)
KL(p(m)(Θ1) || p0(Θ1))

+ (1− α)KL(p(m)(γ) || p0(γ))
+αKL(p(m)(γ) || q(m−1)(γ))

s.t.

{∫
p(m)(Θ1,γ) [ytL1(X

1
t |Θ1)− γt] dΘ1dγ ≥ 0

1 ≤ t ≤ N,
(4)

and

q(m)(Θ2,γ)

= argminq(m)(Θ2,γ)
KL(q(m)(Θ2) || q0(Θ2))

+ (1− α)KL(q(m)(γ) || q0(γ))
+αKL(q(m)(γ) || p(m)(γ))

s.t.

{∫
q(m)(Θ2,γ) [ytL2(X

2
t |Θ2)− γt] dΘ2dγ ≥ 0

1 ≤ t ≤ N.
(5)

Notice that we omit αKL(q(m−1)(γ) || p(m)(γ)) in (4)
for the purpose of simplifying the subsequent calculation
of derivatives. We think αKL(p(m)(γ) || q(m−1)(γ)) is
a good approximation to αKL(p(m)(γ) || q(m−1)(γ)) +
αKL(q(m−1)(γ) || p(m)(γ)) since the latter is just
the symmetrization version of the former. We omit
αKL(p(m)(γ) || q(m)(γ)) in (5) for the same reason.

Before employing this iterative scheme, we first choose
some initial value for q(0)(Θ2,γ). It is a proper choice to ini-
tialize q(0)(Θ2,γ) with q0(Θ2,γ), which makes (4) a stan-
dard MED problem. We will use this scheme in this paper.



The Lagrangian of (4) can be written as

L=
∫
p(m)(Θ1) log

p(m)(Θ1)
p0(Θ1)

dΘ1

+(1− α)
∫
p(m)(γ) log p(m)(γ)

p0(γ)
dγ

+α
∫
p(m)(γ) log p(m)(γ)

q(m−1)(γ)
dγ

−
N∑
t=1

∫
p(m)(Θ1,γ)λ

(m)
1,t [ytL1(X

1
t |Θ1)−γt] dΘ1dγ

=
∫
p(m)(Θ1,γ) log

p(m)(Θ1,γ)
p0(Θ1)[p0(γ)]1−α[q(m−1)(γ)]α

−
N∑
t=1

∫
p(m)(Θ1,γ)λ

(m)
1,t [ytL1(X

1
t |Θ1)−γt] dΘ1dγ,

(6)
where λ(m)

1 = {λ(m)
1,t } is a set of nonnegative Lagrange mul-

tipliers, one for each classification constraint. After taking the
partial derivative of (6) with respect to p(m)(Θ1,γ) and set-
ting it to zero, we will obtain the solution to (4) which has the
following form

p(m)(Θ1,γ) =
1

Z
(m)
1 (λ

(m)
1 )

p0(Θ1)[p0(γ)]
1−α[q(m−1)(γ)]α

exp

{
N∑
t=1

λ
(m)
1,t [ytL1(X

1
t |Θ1)− γt]

}
,

(7)
where Z(m)

1 (λ(m)) is the normalization constant. λ(m)
1 is set

by finding the unique maximum of the following concave ob-
jective function:

J
(m)
1 (λ

(m)
1 ) = − logZ

(m)
1 (λ

(m)
1 ). (8)

Apply the same analysis to (5) and we will obtain the its
solution, which has the following form

q(m)(Θ2,γ) =
1

Z
(m)
2 (λ

(m)
2 )

q0(Θ2)[q0(γ)]
1−α[p(m)(γ)]α

exp

{
N∑
t=1

λ
(m)
2,t [ytL2(X

2
t |Θ2)− γt]

}
,

(9)
where λ(m)

2 = {λ(m)
2,t } is another set of Lagrange multipliers.

λ
(m)
2 is set by finding the maximum of the following objective

function:

J
(m)
2 (λ

(m)
2 ) = − logZ

(m)
2 (λ

(m)
2 ). (10)

After each iteration, we calculate the relative error between
values of (8) from two successively iterations and that of (10),
respectively, and utilize them for determining convergence.
When the relative errors

J
(m)
1 (λ

(m)
1 )− J (m−1)

1 (λ
(m−1)
1 )

J
(m−1)
1 (λ

(m−1)
1 )

(11)

and
J
(m)
2 (λ

(m)
2 )− J (m−1)

2 (λ
(m−1)
2 )

J
(m−1)
2 (λ

(m−1)
2 )

(12)

are both less than some tolerance ε, the iteration ends. Then
we obtain p(Θ1) and q(Θ2) and use the following formulas
as decision rules for a new example (X1, X2) from view 1
and view 2, respectively

ŷ1 = sign

(∫
p(Θ1)L1(X

1
t |Θ1) dΘ1

)
, (13)

ŷ2 = sign

(∫
p(Θ2)L2(X

2
t |Θ2) dΘ2

)
, (14)

or use two views together

ŷ = sign
(
1
2

∫
p(Θ1)L1(X

1
t |Θ1) dΘ1

+ 1
2

∫
p(Θ2)L2(X

2
t |Θ2) dΘ2

)
.

(15)

3 Practical Realization

In this section, we discuss the practical realization of
SMVMED. Since the priors p0(Θ1,γ) and q0(Θ2,γ) play
an important role in the solution, we shall give their concrete
formulations. Also, we use the linear classifier assumptions,
that is,

L1(X
1
t |Θ1) = θ

T
1 X

1
t + b1, (16)

L2(X
2
t |Θ2) = θ

T
2 X

2
t + b2. (17)

We will show that the particular configuration leads to the
implementation of an SMO algorithm for fast training.

Suppose

p0(Θ1,γ) = p0(Θ1)p0(γ) = p0(θ1)p0(b1)p0(γ), (18)

q0(Θ2,γ) = q0(Θ2)q0(γ) = q0(θ2)q0(b2)q0(γ), (19)

where p0(θ1) and q0(θ2) are Gaussian distributions with
mean 0 and standard deviation I , p0(b1) and q0(b2) are set to
non-informative Gaussian distributions, and p0(γ) and q0(γ)
are assumed to be fully factorized, namely,

p0(γ) =

N∏
t=1

p0(γt), (20)

q0(γ) =

N∏
t=1

q0(γt), (21)

with p0(γt) = q0(γt) = c√
2π
e−

c2

2 (1−γt)2 , a Gaussian prior
with mean 1 that encourages large margins.

Under the above configuration, we can derivate a con-
crete form of (8) and (10). Before doing that, we first in-
troduce some notations to simplify the derivation. We use k
to indicate the times of optimization problems that we have
solved and set l = (kmod2) + 1. Let Z(k)(λ(k)) represent
Z

(m)
1 (λ

(m)
1 ) when k = 2m − 1, and represent Z(m)

2 (λ
(m)
2 )

when k = 2m. J (k)(λ(k)) is used in the same manner. After



that, Z(m)
1 (λ

(m)
1 ) in (7) and Z(m)

2 (λ
(m)
2 ) in (9) become

Z(k)(λ(k))

=
∫
N(θl|0, I) exp

{
θT
l

(
N∑
t=1

λ
(k)
t ytX

l
t

)}
dθl

N(bl|0, σ2
l ) exp

{
bl

(
N∑
t=1

λ
(k)
t yt

)}
dbl

exp

{
−

N∑
t=1

(
k∑
i=1

αk−iλ
(i)
t

)}
N∏
t=1

c√
2π
e−

c2

2 (1−γt)2dγ

exp

α
N∑
t=1

k−1∑
i=1

(
αk−1−iλ

(i)
t

)2
−

(
k−1∑
i=1

α(k−1−i)λ
(i)
t

)2

2c2




= exp

{
1
2

(
N∑

t,τ=1
λ
(k)
t λ

(k)
τ ytyτX

l
t
T
X l
τ

)

+ σ2

2

(
N∑
t=1

λ
(k)
t yt

)2
}

exp

− N∑
t=1

1−

k−1∑
i=1

αk−iλ
(i)
t

c2

λ
(k)
t +

N∑
t=1

(
λ
(k)
t

)2

2c2


exp

− (1− 1
α

) N∑
t=1

(
k−1∑
i=1

αk−iλ
(i)
t

)2

2c2

 .

(22)
Substituting it into (8) and (10), we will get

J (k)(λ(k))

=
N∑
t=1

1−

k−1∑
i=1

αk−iλ
(i)
t

c2

λ
(k)
t −

N∑
t=1

(
λ
(k)
t

)2

2c2

− 1
2

(
N∑

t,τ=1
λ
(k)
t λ

(k)
τ ytyτX

l
t
T
X l
τ

)

−σ
2

2

(
N∑
t=1

λ
(k)
t yt

)2

+
(
1− 1

α

) N∑
t=1

(
k−1∑
i=1

αk−iλ
(i)
t

)2

2c2 .

(23)
According to the non-informative prior assumption on

b1 and b2, we will have σ2
l → ∞, which requires that

N∑
t=1

λ
(k)
t yt = 0. Thus we have the following dual optimiza-

tion problem

max
λ(k)

N∑
t=1

1−

k−1∑
i=1

αk−iλ
(i)
t

c2

λ
(k)
t −

N∑
t=1

(
λ
(k)
t

)2

2c2

− 1
2

(
N∑

t,τ=1
λ
(k)
t λ

(k)
τ ytyτX

l
t
T
X l
τ

)

+
(
1− 1

α

) N∑
t=1

(
k−1∑
i=1

αk−iλ
(i)
t

)2

2c2

s.t.


λ(k) ≥ 0
N∑
t=1

λ
(k)
t yt = 0.

(24)

The Lagrange multipliers λ(k) are set by solving the con-
vex optimization problem (24). After each iteration, we ob-
tain two sets of Lagrange multipliers and substitute them into
(8) and (10). Then we can use (11) and (12) to judge conver-
gence. After the iteration converges, we compute (22) using
λ
(m)
1 from the last iteration and substitute (16), (18), (20) and

(22) into (4) to obtain the solution p(Θ1,γ). Similarly, using
λ
(m)
2 from the last iteration to compute (22) and substitut-

ing (17), (19), (21) and (22) into (5) will give q(Θ2,γ). The
decision rule using view 1 can be given as

ŷ1 = sign
(
θ̂T1 X

1 + b̂1

)
, (25)

where θ̂1 and b̂1 are the expected values of discriminant func-
tion parameters. θ̂1 is obtained as follows

θ̂1 =
∫
p(Θ1,γ)θ1dΘ1dγ =

∫
p(θ1)θ1dθ1

=
∑N
t=1 λ

(m)
1t ytX

1
t .

(26)

With (26) substituted into (25), the prediction rule becomes

ŷ1 = sign

(
N∑
t=1

λ
(m)
1t ytX

1
t
T
X1 + b̂1

)
, (27)

Similarly, the prediction rules using view 2 and using two
views together are given as

ŷ2 = sign

(
N∑
t=1

λ
(m)
2t ytX

2
t
T
X2 + b̂2

)
, (28)

ŷ = sign

(
1
2

(
N∑
t=1

λ
(m)
1t ytX

1
t
T
X1 + b̂1

)
+ 1

2

(
N∑
t=1

λ
(m)
2t ytX

2
t
T
X2 + b̂2

))
.

(29)

We will give the solution to b̂1 and b̂2 in the next section.

3.1 Remarks on Margin Priors
Jaakkola et al. [3] discussed different margin priors and their
corresponding potential terms in the objective function of the
dual optimization problem. Both MVMED and AMVMED
choose the exponential distribution p0(γt) = ce−c(1−γt) as
the margin prior which leads to a logarithmic potential term.
In this paper, we use the Gaussian distribution p0(γt) =

q0(γt) = c√
2π
e−

c2

2 (1−γt)2 as margin priors since the corre-
sponding potential term makes the key optimization problem
of SMVMED a quadratic programming problem, which can
be solved efficiently.

4 Sequential Minimal Optimization
In this section, we propose an SMO algorithm to solve the
convex optimization problem (24) which plays a central role
in SMVMED. We will also give the solution to b̂1 and b̂2 in
(27), (28) and (29). SMO solves (24) by successively per-
forming direction search on a small subset of dataset called



working set [Bottou and Lin, 2007]. With respect to the work-
ing set selection scheme, we use the second order working set
selection scheme [Fan et al., 2005].

First, we rewrite the objective function in (24) as

D(λ(k)) =
N∑
t=1

1−

k−1∑
i=1

αk−iλ
(i)
t

c2

λ
(k)
t −

N∑
t=1

(
λ
(k)
t

)2

2c2

− 1
2

(
N∑

t,τ=1
λ
(k)
t λ

(k)
τ ytyτK

l
tτ

)
(30)

where we omit the term irrelevant toλ(k) and replaceX l
t
T
X l
τ

with Kl
tτ so that nonlinear classifiers can be taken into ac-

count. Then we write the constraints on λ(k)t as constraints on
ytλ

(k)
t , that is,

ytλ
(k)
t ∈ [At, Bt] =

{
[0, +∞] , yt = 1

[−∞, 0] , yt = −1.
(31)

We give the optimality criterion next. Let λ∗ = {λ∗t }, t =
1, . . . , N, be the solution to (31). λ∗ should satisfy the opti-
mization constraints. Let g∗ = {g∗t }, t = 1, . . . , N, be the
derivatives of (30) with respect to λ∗.

g∗t =
∂D(λ∗)

∂(λ∗t )
= 1−

k−1∑
i=1

αk−iλ
(i)
t

c2
−yt

N∑
τ=1

yτλ
∗
τG

l
tτ , (32)

where

Gltτ =

{
Kl
tτ , t 6= τ

Kl
tτ +

1
c2 , t = τ.

(33)

Define λε = {λεt}, t = 1, . . . , N, as

λεu = λ∗u +

{
+εyu, u = t
−εyu, u = τ
0, otherwise,

(34)

where (t, τ) is a pair of subscripts such that ytλ∗t < Bt and
yτλ
∗
τ > Aτ , and ε is a small positive quantity. Since λ∗ is the

solution to (31), the first order expansion
D(λε)−D(λ∗) = ε (ytg

∗
t − yτg∗τ ) + o(ε) ≤ 0 (35)

suggests that ytg∗t − yτg∗τ is necessarily negative. This hold
for all pairs (t, τ) such that ytλ∗t < Bt and yτλ

∗
τ > Aτ .

Therefore we can write the following optimality criterion
∃ρ ∈ R, max

t∈{t|ytλ∗
t<Bt}

ytg
∗
t ≤ ρ ≤ min

τ∈{τ |yτλ∗
τ>Aτ}

yτg
∗
τ .

(36)
To start with, we initialize λt = 0 and gt = 1 −

k−1∑
i=1

αk−iλ
(i)
t

c2 , t = 1, . . . , N . Then we successively choose a
pair of subscripts (t, τ) as the working set and perform direc-
tion search on it until the optimality criterion (36) is satisfied.
The second order working set selection scheme can be for-
mulated as

t = argmax
u∈{u|yuλu<Bu}

yugu,

τ = argmax
u∈{u|yuλu>Au}

(ytgt−yugu)2

2(Gltt+Gluu−2Gltu)

s.t. ytgt > yugu.

(37)

For each working set, we maximize (30) by performing direc-
tion search along a direction v containing only two non-zero
coefficients: vt = yt, vτ = yτ . This direction search is ex-
pressed by the following optimization problem

η = argmax
η∈{η|η≥0}

D (λ+ ηv) , (38)

where λ is the starting point. The solution to (38) is

η = min

{
Bt−ytgt, yτgτ−Aτ ,

(ytgt−yτgτ )
2
(
Gltt +Glττ−2Gltτ

)} .
(39)

Gradients and coefficients are updated as follows

∀u ∈ {1, . . . , N}, gu = gu − ηyuGltu + ηyuG
l
τu, (40)

λt = λt + ytη, (41)

λτ = λτ + yτη. (42)

Repeat the above procedure until optimality criterion (36) is
satisfied, and we will obtain solution to (24). With respect to
b̂l in the prediction rules, we set b̂l = ρ.

5 Experiment
In this section, we evaluate SMVMED on real-world datasets:
Course, Ads and Indoor. We compare soft margin consis-
tency and hard margin consistency by performing SMVMED,
MVMED and AMVMED on Course and Ads. Since Indoor
is a large dataset that can not be handled by MVMED and
AMVMED, we compare SMVMED with SVM-2K [Farquhar
et al., 2005] on it to show the scalability. For prediction
functions, besides using two views sign(f1) and sign(f2)
separately, the hybrid prediction function is also taken into
consideration. That is, we also consider sign( 12 (f1 + f2))
for SMVMED, MVMED and SVM-2K and sign(ρf1 +
(1 − ρ)f2)) for AMVMED, where ρ is chosen from
{0, 0.1, . . . , 1.0}. Among all the three prediction functions
, the one having the highest validation accuracy will be se-
lected. The linear kernel is used in all the experiments. All
of the experiments are executed on an Intel(R) Core(TM)
i7-3667U 2.00GHz CPU with 8GB of RAM using Matlab
R2014a.

5.1 Soft Margin Consistency vs. Hard Margin
Consistency

We evaluate the performance of our soft margin based multi-
view MED by comparing it with MVMED and AMVMED
on Course and Ads. Note that the original implementations
of MVMED and AMVMED use the exponential prior. Here
we also adapt them with the Gaussian prior to facilitate com-
parisons with SMVMED. We give a description of each used
dataset below.

• Course: The dataset is the web-page dataset used in the
co-training experiment [Blum and Mitchell, 1998]. It is a
subset of the WebKB dataset which contains web pages
collected by World Wide Knowledge Base (Web -> Kb)
project of the CMU text learning group from computer
science departments of four universities. It contains 230



Data MVMED (exp) MVMED (Gaussian) AMVMED (exp) AMVMED (Gaussian) SMVMED
Course 93.61± 0.72 94.26± 0.77 93.80± 1.13 93.95± 1.13 94.36± 1.08

Ads 94.73± 1.94 95.07± 1.67 95.33± 1.75 95.27± 1.92 96.40± 1.55

Table 1: Average accuracies and standard deviations for Course and Ads

Data MVMED (exp) MVMED (Gaussian) AMVMED (exp) AMVMED (Gaussian) SMVMED
Course 262.20s 9.80s 203.16s 9.79s 1.41s

Ads 78.93s 2.65s 62.92s 1.38s 0.88s

Table 2: Average training times for Course and Ads

course pages and 821 non-course pages, with view 1 be-
ing words in a web page and view 2 being words in the
hyperlinks to the page. The dimensions of the two views
are 500 and 82, respectively.

• Ads: The dataset consists of 459 ads images and 2820
non-ads images [Kushmerick, 1999]. We randomly se-
lect 600 examples as the used dataset. View 1 contains
587 features describing the image itself. The other 967
features form view 2.

We randomly select half of the dataset as the training
set, and the rest is divided into the validation set and the
test set equally. Parameter c in SMVMED, MVMED and
AMVMED is independently chosen from {21, 22, . . . , 25}
for Course, and from {21, 22, . . . , 215} for Ads. Parameter
α in SMVMED is chosen from {0, 0.1, . . . , 1.0}. All the ex-
periments are performed ten times.

The average accuracies and standard deviations in percent-
age for Course and Ads are shown in Table 1, and the corre-
sponding average training times with validated parameters are
shown in Table 2. From Table 1, we can see that SMVMED
performs better than MVMED and AMVMED. Table 2
shows that SMVMED and the Gaussian prior MVMED
and AMVMED train much faster than the exponential prior
MVMED and AMVMED, and that SMVMED is the fastest.

5.2 Scalability
We examine the scalability of SMVMED on a large dataset
Indoor and compare it with SVM-2K. The dataset is the UJI-
IndoorLoc indoor localization database [Joaquın et al., 2014].
The training set consists of 19936 examples including 5249
Wifi fingerprints collected from building 0, 5195 from build-
ing 1 and 10444 form building 2. The test set consists of 536
Wifi fingerprints collected from building 0, 306 from build-
ing 1 and 268 from building 2. We perform experiments on
both the whole dataset and a subset containing only examples
from building 0 and 1. For the whole dataset experiment, we
use examples from building 0 and 1 as the positive class and
the others as the negative class. Each Wifi fingerprint is char-
acterized by the detected wireless access points and the cor-
responding received signal strength intensity. We divide 520
intensity values into two views, the dimensions of which are
300 and 220, respectively. Each intensity value is randomly
assigned to one of the two views. Since the performance of
SMVMED is not sensitive to parameter c on the dataset, we
fix it to 1. Parameter α is chosen from {0, 0.1, . . . , 1.0}.

Table 3 shows the accuracies for Indoor and its subset, and

Accuracy Time
SVM-2K SMVMED SVM-2K SMVMED

Subset 99.88 100 876.51s 203.13s
Indoor 99.55 100 3113.19s 448.69s

Table 3: Accuracies and training times for Indoor and its sub-
set

the corresponding training times. From Table 3, we can find
that SMVMED performs better than SVM-2K and is much
faster. Also, with the increase of the dataset size, the trainng
time of SMVMED grows more slowly than that of SVM-2K.

The dataset used here includes 19936 training examples.
However, SMVMED is scalable for larger datasets. From
(37), (39) and (40), we can see that only the diagonal and
two rows of Gl are required at the same time in SMO. There-
fore, once these elements of Gl of a dataset can be cached, it
can be handled by SMVMED.

5.3 Summary

The above experimental results show that SMVMED per-
forms better than MVMED and AMVMED, and is much
faster. The choice of the Gaussian margin prior greatly
improves the training speed. On the large dataset Indoor,
SMVMED performs better than SVM-2K and trains much
faster.

6 Conclusion
We have presented soft margin consistency based scalable
MED, with an SMO algorithm for efficient training. Differ-
ent from the hard margin consistency used in MVMED and
AMVMED, a different principle of less strict soft margin con-
sistency is employed. By balancing large margin and margin
consistency, SMVMED is more flexible. Furthermore, the use
of the Gaussian prior and SMO makes SMVMED very ef-
ficient. Experimental results on multiple real-world datasets
have shown its good performance and scalability.
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